Cobaltkomplexe mit As₄-Liganden

Otto J. Scherer*, Karl Pfeiffer und Gotthelf Wolmershäuser¹⁺¹

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, W-6750 Kaiserslautern

Eingegangen am 9. April 1992

Key Words: Tetraarsenic ligands / Oxidative addition / Bond cleavage in As4, successive / Cobalt As4 complexes

Cobalt Complexes with As₄ Ligands

The reaction of $[Cp^*Co(\mu-CO)]_2(Co = Co)$ (1) with As₄ in boiling toluene gives the cobalt complexes $[Cp^*Co(CO)(\eta^{1:1}-As_4)]$ (2), $[{Cp^*Co(CO)}_2(\mu-\eta^{1:1:1:1}-As_4)]$ (3), *exo,endo*- $[Cp^*Co(\mu-\eta^{4:1:1}-As_4)Co(CO)Cp^*]$ (4a, b), and $[Cp^*Co(\mu-\eta^{2:2}-As_2)]_2$ (5), $Cp^* =$

Sollen die vier As-Atome des As₄-Tetraeders noch miteinander verbunden bleiben, dann können maximal drei der sechs Kanten gespalten werden. Beim Öffnen der vierten Kante bilden sich entweder zwei As₂- oder ein As₃- und ein As₁-Bruchstück(e). Die sukzessive Spaltung von zwei, drei und vier As-As-Bindungen im As₄-Tetraeder konnten wir jetzt gezielt bei der Umsetzung von [Cp*Co(μ -CO)]₂(Co=Co) mit gelbem Arsen, As₄, verifizieren und gleichzeitig die Palette der As₄-Liganden^[1] um weitere Beispiele bereichern.

Synthese, Eigenschaften und spektroskopische Daten der ein- und zweikernigen Cobaltkomplexe 2-5

Setzt man $[Cp*Co(\mu-CO)]_2(Co=Co)$ (1) mit As₄ in siedendem Toluol um, dann lassen sich säulenchromatographisch die in Schema 1 aufgeführten Cobaltkomplexe 2-5 abtrennen und charakterisieren.

Schema 1

$$[Cp^*Co(\mu-CO)]_2 \xrightarrow{As_4, Toluol} \\ 1 \\ Cp^* = \eta^5 - C_5 Me_5 \\ \end{bmatrix} \xrightarrow{As_4, Toluol} \\ [Cp^*Co(\mu-\eta^{1:1:1-}As_4)] \\ (Cp^*Co(\mu-\eta^{4:1:1-}As_4)Co(CO)Cp^*] \\ (Cp^*Co(\mu-\eta^{4:1:1-}As_4)Co(CO)Cp^*] \\ (Cp^*Co(\mu-\eta^{2:2-}As_2)]_2 \\ (Cp^*Co(\mu-\eta^{2:2-}As_2) \\ (Cp^*Co(\mu-\eta^{2:2-}As_2)]_2 \\ ($$

2 bildet rotbraune, 3 dunkelgrüne und 4a, b (exo,endo-Isomere in bezug auf die Stellung des CO-Liganden) sowie $5^{[2]}$ schwarze Kristalle, die kurzzeitig an Luft handhabbar sind und sich in *n*-Pentan mäßig bis schlecht, in Toluol und Dichlormethan mäßig bis gut lösen.

Im IR-Spektrum unterscheidet sich der v(CO)-Wert beim exo, endo-Isomerenpaar 4a, b um 16 cm⁻¹; die ¹H-NMR- C_5Me_5 . **2**, **3**, and **4b** have been characterized by X-ray structure analyses. With respect to the mechanism of this reaction the successive cleavage of two, three, and four As – As bonds of yellow arsenic, As₄, has been proved.

Singuletts sind bei **4b** (*endo*-Isomeres) geringfügig hochfeldverschoben (Tab. 1).

Im Massenspektrum findet man bei 2 nur unter CI-Bedingungen den Molekülpeak, und zwar als Basis-Signal, gefolgt vom CO-freien Fragment (70%), das unter EI-Bedingungen bei 3 und 4a, b das intensitätsstärkste ist. Bei der Fragmentierung aller Komplexe ist As_4^+ in geringer Intensität nachweisbar.

Molekülstrukturen der ein- und zweikernigen Cobaltkomplexe 2, 3 und 4b

Ausgewählte Bindungslängen und -winkel sind in Tab. 2, die Röntgenstrukturanalyse-Daten in Tab. 3 zusammengefaßt. Abb. 1-3 geben die Molekülstrukturen wieder.

Abb. 1. Molekülstruktur von $[Cp^{*}(CO)Co(\eta^{1:1}-As_4)]$ (2)

2 und 3 stimmen in den Trends der Bindungslängen und -winkel sehr gut mit den Phosphoranaloga 6, einem Cobaltatetraphosphatricyclopentan, und 7, einem Dicobaltatetraphosphatricyclohexan, überein^[3]. Dies gilt auch für den Ver-

^[+] Röntgenstrukturanalysen.

Tab. 1. IR- (Werte in cm⁻¹), ¹H-NMR- (δ -Werte) und MS-Daten der Komplexe 2-4

 $[Cp^{*}(CO)Co(As_{4})](2) [{Cp^{*}(CO)Co}_{2}(As_{4})](3) [Cp^{*}Co(As_{4})Co(CO)Cp^{*}](4a, b)$

Ŋ(CO) [a]	1979(vs)	1967 (vs)	1982(vs) (4a), 1966(vs) (4b)
1 _H [b] CH3	1.41(s,15H)	1.63(s,30H)	1.99(s,15H), 1.58(s,15H) (4a)
			1.93(s,15H), 1.55(s,15H) (4b)
MS ^[C] T [°C]	150	250	200 (4a), 180 (4b)
m/z (%)	522 (M ⁺ , 100)	744 (M ⁺ , 1)	716 (M ⁺ , 3 bzw. 2)
	494 (M ⁺ -CO, 70)	688 (M ⁺ -2CO, 100)	688 (M ⁺ -CO, 100)
	344 (Cp*CoAs ₂ +, 18)	553 (Cp [*] Co ₂ As ₄ ⁺ , 2)	613 (Cp [*] ₂ Co ₂ As ₃ ⁺ , 3)
	300 (As ₄ ⁺ , 2)	494 (Cp [*] CoAs ₄ ⁺ , 1)	538 ($\text{Cp}_{2}^{*}\text{Co}_{2}\text{As}_{2}^{+}$, 4 bzw. 5)
		344 (Cp [*] CoAs ₂ ⁺ , 9)	403 (Cp [*] Co ₂ As ₂ ⁺ , 5)
		300 (As ₄ +, 9)	344 (Cp [*] CoAs ₂ ⁺ , 11 bzw. 10)
			300 (As ₄ ⁺ , 3 bzw. 6)

^[a] In *n*-Hexan. - ^[b] In C₆D₆, 200 MHz. - ^[c] CI (Isobutan) bei 2, alle anderen EI (70 eV); auf die Angabe weiterer Bruchstücke wird verzichtet. 4a \doteq exo-, 4b endo-Anordnung in bezug auf Stellung des CO-Liganden.

Abb. 2. Molekülstruktur von [{Cp*(CO)Co}₂(μ - $\eta^{1:1:1:1}$ -As₄)] (3)

gleich von **4b** mit dem analog aufgebauten **8**, einem Zweikernkomplex mit einem Rhodatetraposphacyclopentadien-Liganden^[4].

$$\begin{array}{c} [Cp*Co(CO)(\eta^{1:1}-P_4)] & [\{Cp*Co(CO)\}_2(\mu-\eta^{1:1:1:1}-P_4)] \\ 6 & 7 \\ [Cp'Rh(\mu-\eta^{4:1:1}-P_4)Rh(CO)Cp'] \\ & 8 \end{array}$$

$$Cp^* = \eta^5 - C_5 Me_5, Cp' = \eta^5 - C_5 Me_4 Et$$

Bei den drei Komplexen liegen $d(As1 \cdots As2)$ und bei 3 auch $d(As3 \cdots As4)$ mit > 2.82 Å im nichtbindenden Bereich. Wie bei 6 ist auch für 2 (Abb. 1) die dem Co gegenüberliegende As3 – As4-Kante mit 2.384(2) Å kürzer als 2.44 Å (Mittelwert der restlichen vier Kanten), die auch für gelbes Arsen, As₄, gefunden werden^[5]. Einen genau so kurzen Abstand von 2.383(1) Å weist das As₂-,,Gelenk" des Moleküls (RP)₂As₂

mit Butterfly-Struktur auf^[6]. Beim Übergang von 2 zu 3 (Abb. 2) mit formal doppelt oxidativ addiertem As₄-Liganden ist d(As - As) auf 2.48 Å verlängert, ein Trend, der auch für 6 und 7 zu beobachten ist^[3]. Bei 4b (Abb. 3) weichen das planare As₄-Fragment und der ebene Fünfring am Co2-Atom um 1.2° von der Parallelität ab. Dieses höher koordinierte Co-Atom [d(Co2 - As1 - 4) = 2.41 Å] weist geringfügig längere Co-As-Abstände als Co1 [d(Co1 - As1, -4)]

Abb. 3. Molekülstruktur von [Cp*Co(μ - $\eta^{4:1:1}$ -As₄)Co(CO)Cp*] (4b)

Tab. 2. Ausgewählte Bindungslängen [Å] und -winkel [°] der Cobaltkomplexe 2, 3 und 4b. Die Elementarzelle von 2 enthält zwei unabhängige Moleküle, die sich in den Bindungslängen und -winkeln kaum unterscheiden; wiedergegeben ist Molekül A (Zentr. = Ringzentrum). Interplanarwinkel: As2,3,4/As1,3,4 = 84.9° bei 2, 89.5° bei 3; As1,2,3/As1,2,4 = 90.4° bei 3; C(01),Co1,Co2/ Co1,Co2,C(02) = 94.6° bei 3;

	2	3	4b
As1As2	2.878(2)	2.838(2)	2.826(2)
As3-As4	2.384(2)	2.881(2)	2.368(3)
As1-As3	2.445(2)	2.462(2)	
As2-As3	2.443(2)	2.480(2)	2.381(3)
As2-As4	2.433(2)	2.487(2)	
As1-As4	2.446(2)	2.479(2)	2.385(3)
Col-Asl	2.351(2)	2.373(2)	2,364(3)
Col-As2	2.371(2)	2.383(2)	2.368(3)
Co2-As1			2.408(3)
Co2-As2			2.400(3)
Co2-As3		2.374(2)	2.414(3)
Co2-As4		2.377(2)	2.419(3)
Col-Cp [*] (Zentr.)	1.72	1.74	1.73
Co2-Cp [*] (Zentr.)		1.735	1.68
Co1-C(01)	1.708(12)	1.701(15)	1.710(19)
Co2-C(02)		1.727(14)	
C(01)-01	1.151(13)	1.168(15)	1.154(19)
C(02)-02		1.148(14)	
As3-As1-As4	58.3(1)	71.3(1)	Col-Asl-Co2
As3-As2-As4	58.5(1)	70.9(1)	107.3(1)
As2-As3-As1	72.1(1)	70.1(1)	Col-As2-Co2
As2-As4-As1	72.3(1)	69.7(1)	107.4(1)
As1-Co1-As2	75.1(1)	73.3(1)	73.3(1)
As3-Co2-As4		74.7(1)	72.0(1)
As1-As3-As4	60.9(1)		As1-Co2-As2
As2-As3-As4	60.5(1)		95.7(1)
Asl-As4-As3	60.8(1)		95.4(1)
As2-As4-As34	61.0(1)		
As4-As1-Col			112.1(1)
As3-As2-Col			111.9(1)

2) = 2.37 Å] auf. Der Mittelwert der As-As-Bindungslängen von 2.38 Å bei 4b, der deutlich kürzer ist als bei 2 und 3, rechtfertigt die Beschreibung des Moleküls als Cobaltateraarsacyclopentadien-Ligand mit aufgesetzter 14-VE-Cp*Co-Haube. Er ist identisch mit dem mittleren As-As-Abstand des Tetraarsacyclobutadien-Liganden, cyclo-As₄, in $[Cp^*(CO)_2Nb(\eta^4-As_4)]^{[7]}$. Das Co1-Atom ist um 57.3° aus der Ebene eines planaren Fünfringes abgeknickt. Die Winkelsumme des rautenförmigen Vierringes Co1,As1,Co2,As2 beträgt exakt 360°.

Mechanistische Aspekte

Obwohl die Bildung von E_n -Liganden aus tetraedrischem E_4 (E = P, As) formal durch sukzessives Öffnen seiner Kanten ableitbar ist^[1a], konnten hierfür bislang noch keine schlüssigen experimentellen Beweise erbracht werden. Erste Teilaspekte dieser in mechanistischer Hinsicht fundamentalen Reaktionsweise sind in Schema 2 zusammengefaßt.

Schema 2. Sukzessive Spaltung von As-As-Bindungen im gelben Arsen, As $_4$

Die Reaktion von 1 mit As₄ in siedendem Toluol zeigt, daß sie unter ¹H-NMR-spektroskopischer Kontrolle wie folgt abläuft:

1) Im ersten Schritt [Weg (a)] wird die Co-Co-Doppelbindung von 1 unter ausschließlicher Bildung von 3 gespalten, wobei zwei As-As-Kanten die vier fehlenden Elektronen zur Verfügung stellen (formal doppelte oxidative Addition von As₄).

2) Erwärmt man isoliertes 3 in Xylol 1 h auf 140 °C [Weg (b)], dann bildet sich ausschließlich das *exo,endo*-Isomerenpaar 4a, b (letzteres mit *endo*-Anordnung des CO-Liganden ist bevorzugt), bei dem jetzt drei der ursprünglich sechs As₄-Kanten gespalten und die vier As-Atome eingeebnet wurden (vgl. Abb. 3).

3) Die As₄-Kette wird dann in zwei As₂-Bruchstücke gespalten [Weg (c)], wenn man isoliertes **4a**, **b** 5 h auf 140 °C erwärmt. Beim nahezu ausschließlich gebildeten **5** hat unter erneuter CO-Eliminierung eine weitere As – As-Bindung als 2-e-Donor fungiert.

4) 2, bei dem formal die einfache oxidative Addition von As₄ realisiert ist, entsteht erst dann [Weg (d)], wenn man 3 einige Stunden mit überschüssigem As₄ auf 110° C erwärmt. Als "Nebenprodukte" bilden sich zusätzlich die Komplexe 4a, b und 5. Komplex 2 entsteht nicht bei der zweistündigen

	[Cp [*] (CO)Co(As _d)]	$[Cp^*_{2}(CO)_{2}Co_{2}(As_{4})]$	[Cp [*] ₂ (CO)Co ₂ (As ₄)]
	2	3	4b
Formel	C ₁₁ H ₁₅ As ₄ CoO	C ₂₂ H ₃₀ As ₄ Co ₂ O ₂	C ₂₁ H ₃₀ As ₄ Co ₂ O
Molmasse	521.9	744.0	716.0
Kristallsystem	triklin	monoklin	monoklin
Raumgruppe (Nr.)	P1 (2)	P2 ₁ /c (14)	P2 ₁ /c (14)
Zellparameter			
a [Å]	11.924(3)	17.580(3)	14.214(2)
b [Å]	14.269(5)	8.887(1)	9.260(1)
c [Å]	9.229(2)	17.406(3)	19.908(3)
α[°]	97.22(2)		
ß [°]	90.41(2)	106.233(8)	110.424(6)
γ [°]	76.25(2)		
V [Å ³]	1512.7(7)	2611.1(7)	2455.7(6)
Z	4	4	4
d _{ber.} [g/cm ³]	2.29	1.89	1.94
μ (Mo-K _{α})[cm ⁻¹]	61.7	41.8	44.4
Kristallgröße			
[mm]	0.25x0.15x0.025	0.37x0.2x0.08	0.25x0.25x0.05
T [K]	298	298	298
Diffraktometer		Enraf-Nonius CAD4	l i i i i i i i i i i i i i i i i i i i
2 θ _{max} [°]	50	50	46
Scan	ω -2 θ -Scans	ω -2 θ -Scans	ω -2 θ -Scans
Gemessene Reflexe	4519	3687	2530
Beobachtete Reflexe	3471	2586	1826
$[I \ge 2\sigma(I)]$			
Parameter	307	271	253
R,R _w	0.044,0.057 ^[a]	0.056,0.056 ^[a]	0.062,0.062 ^[a]
[e/Å ³]	0.78	0.76	0.77

Tab. 3. Angaben zu den Röntgenstrukturanalysen von 2, 3 und 4b

^[a] $w = 1/[\sigma^2(F) + 0.0002 F^2].$

Umsetzung des Einkernkomplexes $[Cp*Co(CO)_2]$ mit As₄ in siedendem Toluol.

5) Bei noch drastischeren Reaktionsbedingungen (190°C, 4 h, Dekalin) wird 5 teilweise in $[Cp*CoAs_2]_3$ (9) übergeführt, ein Dreikernkomplex mit drei $Cp*CoAs_2$ -Bausteinen, die so angeordnet sind, daß dessen Co₃As₆-Gerüst formal aus einem stark verzerrten, dreifach überkappten As₆-Prisman besteht und jede der drei As₂-Einheiten als 4-e-Donor fungiert^[2].

6) Mit überschüssigem 1 reagiert 2 in Toluol bei 110°C,
2 h [Weg (e)] ausschließlich zu 3.

Wir danken dem Verband der Chemischen Industrie für die finanzielle Unterstützung.

Experimenteller Teil

Sämtliche Versuche wurden unter Argon-Schutz in wasserfreien Lösungsmitteln durchgeführt. – ¹H-NMR: FT-Geräte AC 200 (Bruker); Hochfeldverschiebung gegenüber dem Standard bedeutet negativer Wert. – IR: Perkin-Elmer 881. – MS: Varian-Finnigan, MAT 90.

Ausgangsmaterial: $[Cp*Co(\mu-CO)]_2(Co=Co)$ (1)^[8]. In Tab. 4 ist die prozentuale Produktverteilung der Komplexe 2–5 und 10 in Abhängigkeit von der Stöchiometrie, Temperatur und Rührzeit angegeben.

Komplexe 2-4: Eine Lösung von 550 mg (1.2 mmol) 1 in 70 ml Toluol wird innerhalb von 15 min zu 150 ml einer siedenden Toluollösung von gelbem Arsen (≈ 5.3 mg As₄/ml, ≈ 0.017 mmol As₄/ ml) getropft. Anschließend wird weitere 75 min unter Rückfluß gerührt. Nach dem Abkühlen engt man auf 10 ml ein, versetzt mit ca.

Tab. 4. Produktverteilung der Komplexe 2-5 und 10 bei der Reaktion von 1 mit As₄ in siedendem Toluol in Abhängigkeit von Stöchiometrie, Temperatur und Rührzeit

Stöchiometrie	(a)	(b) [a]	(c)	(d)			
As ₄ : 1, ca.	2:1	2:1	4:1	1:1			
Τ <u>Ϳ</u> °C]	90	110	110	110			
Rührzeit[min]	30	90	180	180		Anal	yse
Ausbeuten	%	%	%	%		С	н
2	0	5	23	0	Ber.	25.32	2.90
					Gef.	25.41	2.93
3	45	18	0	14	Ber.	35.51	4.06
					Gef.	35.62	4.01
4a,b	0	11	4	10	Ber.	35.23	4.22
					Gef.	35.20	4.05
5 [b]	0	2	0	3			
10 [b]	0	0	11	2			

^[a] Siehe Exp. Teil. - ^[b] 5 und 10 sind in Lit.^[2] beschrieben.

Tab. 5. Lageparameter der Atome (× 10⁴) mit isotropen bzw. äquivalenten isotropen Temperaturfaktoren (Å² × 10³) von 2. U_{eq} ist definiert als 1/3 der Spur der orthogonalisierten U_{ij} -Matrix

Atom	x	У	2	U
Coa	613(1)	7770(1)	5664(1)	25(1)
As(la)	378(1)	7750(1)	3130(1)	40(1)
As(2a)	1988(1)	6366(1)	4606(1)	37(1)
As(3a)	988(1)	5998(1)	2364(1)	50(1)
As(4a)	2370(1)	6960(1)	2347(1)	51(1)
C(01a)	1583(10)	8482(8)	5717(12)	40(8)
Oa	2217(8)	8980(7)	5770(11)	69(8)
C(1a)	-578(9)	8688(8)	7161(12)	36(7)
C(2a)	-1193(9)	8186(8)	6163(12)	35(7)
C(3a)	-723(9)	7166(8)	6216(12)	34(7)
C(4a)	122(9)	7040(9)	7338(12)	38(8)
C(5a)	219(9)	7982(9)	7909(11)	34(7)
C(11a)	-807(12)	9767(9)	7497(17)	64(10)
C(21a)	-2158(11)	8627(10)	5239(14)	57(10)
C(31a)	-1193(11)	6357(9)	5381(14)	54(9)
C(41a)	747(10)	6114(9)	7830(14)	51(9)
C(51a)	991(11)	8243(12)	9134(13)	63(11)
Cob	4594(1)	2330(1)	-616(2)	27(1)
As(1b)	4258(1)	2508(1)	1933(1)	43(1)
As(2b)	5241(1)	3726(1)	340(1)	40(1)
As(3b)	3957(1)	4275(1)	2488(2)	57(1)
As(4b)	5836(1)	3248(1)	2728(2)	56(1)
C(01b)	5926(10)	1564(9)	-432(13)	42(8)
Ob	6807(8)	1025(7)	-390(12)	74(7)
C(1b)	3913(9)	1391(8)	-2067(12)	36(7)
C(2b)	3007(9)	1965(9)	-1146(12)	41(8)
C(3b)	2938(9)	2970(9)	-1301(12)	39(8)
C(4b)	3781(10)	2989(9)	-2417(12)	40(8)
C(5b)	4365(9)	2026(9)	-2854(12)	40(8)
C(11b)	4238(13)	289(10)	-2330(17)	65(11)
C(21b)	2217(11)	1614(12)	-187(15)	67(11)
C(31b)	2062(11)	3839(11)	-576(16)	69(10)
C(41b)	3937(13)	3893(11)	-2986(16)	69(12)
C(51b)	4697(12)	8317(13)	4063(14)	72(12)

2 g Al₂O₃ (Aktivitätsstufe II) und trocknet im Ölpumpenvakuum bis zur Rieselfähigkeit. Bei der Säulenchromatographie (Al₂O₃, Säule 25 × 2.5 cm) eluiert man mit Petrolether geringe Mengen [Cp*Co(CO)₂] als orangegelben Vorlauf. Anschließend erhält man der Reihe nach 2 als gelbe, 5 als grüne, 4a (exo-Isomeres) als graugrüne, 3 als gelbolive und 4b (endo-Isomeres) als graugrüne Fraktion. Mit Petrolether/Toluol (5:1) eluiert man anschließend den Zweikernkomplex [Cp^{*}₂Co₂As₆] (10)^[2], der erst bei längeren Reaktionszeiten entsteht. Nach Entfernen des Lösungsmittels i. Vak. werden die Verbindungen umkristallisiert: 2 (Toluol, -78 °C, 60 mg rötliche Kristalle), 5 (*n*-Hexan, -28 °C, 12 mg schwarze Nadeln),

Atom	x	У	z	U
Co(1)	3578(1)	2032(2)	5521(1)	38(1)
Co(2)	1066(1)	-955(2)	3941(1)	30(1)
As(1)	2175(1)	2102(2)	5054(1)	40(1)
As(2)	3167(1)	-308(2)	4868(1)	46(1)
As(3)	2056(1)	746(2)	3792(1)	41(1)
As(4)	1916(1)	-591(2)	5254(1)	40(1)
C(01)	3688(8)	2789(18)	4661(9)	56(9)
0(1)	3780(7)	3303(15)	4076(6)	91 (8)
C(02)	449(8)	454(16)	4096(7)	44(8)
0(2)	10(6)	1341(12)	4193(6)	69(7)
C(1)	4170(9)	3624(19)	6366(8)	59(9)
C(2)	3612(8)	2897(23)	6670(8)	58(9)
C(3)	3804(14)	1313(23)	6723(9)	85(13)
C(4)	4509(13)	1119(24)	6475(10)	80(12)
C(5)	4718(8)	2519(22)	6247(9)	64(10)
C(11)	4253(13)	5298(21)	6216(11)	109(14)
C(21)	2971(11)	3644(31)	6944(10)	138(18)
C(31)	3400(15)	163(29)	7092(9)	173(20)
C(41)	4948(15)	-372(24)	6455(13)	156(18)
C(51)	5438(9)	2855(30)	5924(11)	123(16)
C(6)	166(8)	-2593(14)	3617(7)	40(7)
C(7)	327(8)	-1984(15)	2897(7)	40(7)
C(8)	1139(8)	-2313(15)	2944(8)	45(8)
C(9)	1479(8)	-3079(15)	3691(8)	42(7)
C(10)	871(8)	-3285(15)	4085(8)	42(7)
C(61)	-641(8)	-2584(16)	3768(9)	59(9)
C(71)	-293(9)	-1202(17)	2202(9)	66(9)
C(81)	1540(10)	-1941(18)	2302(8)	70(10)
C(91)	2294(9)	-3749(17)	3931(10)	66(10)
C(101)	A6A(A)	-4108(17)	489I(8)	65(9)

Tab. 7. Lageparameter der Atome (× 10⁴) mit isotropen bzw. äquivalenten isotropen Temperaturfaktoren (Å² × 10³) von **4b**

Atom	x	У	2	U eg
Co(1)	2683(2)	2(2)	1970(1)	33(1)
Co(2)	2289(2)	549(2)	3767(1)	35(1)
As(1)	3539(1)	223(2)	3219(1)	39(1)
As(2)	1440(1)	316(2)	2498(1)	42(1)
As(3)	1410(2)	-1646(2)	3263(1)	59(1)
As(4)	3168(2)	-1723(2)	3871(1)	56(1)
C(01)	2584(15)	-1838(21)	1973(11)	50(12)
0(1)	2547(13)	-3083(14)	1960(8)	78(10)
C(1)	3358(15)	227(22)	1177(12)	55(13)
C(2)	2277(15)	361(21)	851(10)	48(12)
C(3)	1989(14)	1557(20)	1176(10)	41(10)
C(4)	2873(16)	2133(16)	1706(9)	38(10)
C(5)	3738(14)	1278(21)	1707(11)	47(12)
C(11)	3928(18)	÷972(27)	932(14)	89(17)
C(21)	1571(20)	-496(23)	238(12)	95(16)
C(31)	942(16)	2207(25)	956(13)	82(15)
C(41)	2996(19)	3474(20)	2178(13)	82(15)
C(51)	4855(14)	1572(27)	2137(12)	83(16)
C(6)	2854(15)	2425(20)	4332(10)	43(11)
C(7)	2911(15)	1257(22)	4815(11)	54(12)
C(8)	1886(16)	759(20)	4659(11)	49(12)
C(9)	1239(13)	1603(19)	4099(10)	39(10)
C(10)	1828(14)	2653(19)	3887(10)	41(11)
C(61)	3776(16)	3386(23)	4381(13)	76(15)
C(71)	3819(16)	703(27)	5430(12)	85(16)
C(81)	1574(17)	-433(21)	5071(12)	70(14)
C(91)	105(13)	1498(22)	3797(12)	62(13)
C(101)	1462(17)	3845(20)	3361(11)	67(14)
			• •	• •

4a (*n*-Hexan/Toluol 4:1, -28 °C, 33 mg, schwarzes, mikrokristallines Pulver), **3** (*n*-Hexan/Toluol 3:1, -28 °C, 141 mg dunkelgrüne Kristalle) und **4b** (*n*-Hexan/Toluol 1:1, -28 °C, 56 mg schwarze Rauten). Prozentangaben der Ausbeuten siehe Tab. 4.

Röntgenstrukturanalysen von 2, 3 und 4b (siehe Tab. 3^[9]): Strukturlösung mit Direkten Methoden (SHELXS-86) und nach Verfeinerung Differenz-Fourier-Synthesen. Strukturverfeinerung nach der Methode der kleinsten Fehlerquadrate mit SHELX-76-Programm. Die H-Atome wurden nicht lokalisiert und in die Verfeinerung nicht miteinbezogen. Es wurden empirische Absorptionskorrekturen durchgeführt ($\lambda = 0.71073$ Å). min./max. Transmission: 2 27.8/51.2, 3 25.3/52.0, 4b 26.2/56.8. Die Atomkoordinaten sind in Tab. 5-7 enthalten.

- ^[1] Neueste Übersichten: ^[1a] O. J. Scherer, Angew. Chem. 1990, 102, 1137 – 1155; Angew. Chem. Int. Ed. Engl. 1990, 29, 1104 – 1122. – ^[1b] A.-J. DiMaio, A. L. Rheingold, Chem. Rev. 1990, 90, 169-190.
- ^[2] O. J. Scherer, K. Pfeiffer, G. Heckmann, G. Wolmershäuser, J. Organomet. Chem. **1992**, 425, 141-149.
- ^[3] O. J. Scherer, M. Swarowsky, G. Wolmershäuser, Organome-
- ⁽⁴⁾ O. J. Scherer, M. Swarowsky, G. Wolmershauser, *Organometallics* 1989, *8*, 841-842.
 ⁽⁴⁾ O. J. Scherer, M. Swarowsky, H. Swarowsky, G. Wolmershäuser, *Angew. Chem.* 1988, *100*, 738-739; *Angew. Chem. Int. Ed. Engl.* 1988, *27*, 694-695.
 ⁽⁵⁾ L. R. Maxwell, S. B. Hendricks, V. M. Mosley, *J. Chem. Phys.* 1925 2, (200)
- **1935**, *3*, 699 709.
- ^[6] P. Jutzi, U. Meyer, S. Opiela, M. M. Olmstead, P. P. Power, *Organometallics* **1990**, *9*, 1459–1463; siehe auch *exo,exo*-As₄(tBu)₂, M. Baudler, S. Wietfeldt-Haltenhoff, *Angew. Chem.* **1984**, *96*, 361; *Angew. Chem. Int. Ed. Engl.* **1984**, *23*, 379.

- ^[7] O. J. Scherer, J. Vondung, G. Wolmershäuser, J. Organomet. Chem. 1989, 376, C35-C38.
- ^[8] L. M. Cirjak, R. E. Ginsburg, L. F. Dahl, Inorg. Chem. 1982, *21*, 940–957.
- ^[9] Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56389, der Autoren und des Zeitschriftenzitäts angefordert werden.

[167/92]

CAS-Registry-Nummern

1: 69657-52-9 / 2: 142421-33-8 / 3: 142421-34-9 / 4a: 142507-36-6 / 4b: 142421-35-0 / 5: 141315-19-7